

IgK-IgL Rearrangements Molecular Analysis Kit CAT. No. MAD-003999M (20 tests)

The diagnosis of malign lymphomas is one of the most difficult areas in histopathology. Although many cases are diagnosed through histomorphological and immunohistochemical data, occasionally, the differential diagnosis between a reactive process and a malign lymphoma is difficult to determine. The detection of clonality through molecular analysis by PCR of rearrangements of immunoglobulin (Ig) and TCR genes is an instrument of great value in the diagnosis of lymphoproliferative processes B and T.

In the case of the study of lymphoproliferative processes of B cells, the analysis of IgH gene rearrangements is widely used as a tool for the analysis of B clonality, although it is described that certain lymphoid pathologies of germinal and post-germinal center, especially follicular lymphomas and diffuse large cell B lymphomas, can give false negative results. This is due to either inefficient bindings of primers or the effect of somatic hypermutations in IgH genes (implies individual nucleotide mutations and sometimes also insertions or deletions of nucleotides) that can lead to ineffective binding and lack of amplification. In these cases, the complementary study of rearrangements of the light kappa and lambda chains of the immunoglobulins (IgK and IgL respectively) would make it possible to improve detection sensitivity, basically because somatic hypermutations are less frequent in them, being essential its analysis in the diagnostic routine of clonality of B-cell lymphomas.

This kit allows the amplification of the rearranged segments V_K -J $_K$ and of the two types of rearrangements Kde (Vk-Kde and intron-RSS-Kde) for the IgK as well as the rearranged segments V_λ -J $_\lambda$ of the IgL through several consensus primers that hybridize with regions preserved inside these genes.

Characteristics of the kit:

- This kit consists of two PCR mixes for the study of rearrangement of IgK (V κ -J κ and the two types of Kde rearrangements), a mix for the study of IgL rearrangements (V λ -J λ) and an internal amplification control (IC).
- The Hot Start II DNA Polymerase is enzyme is included in the kit.
- The amplification mixtures are presented in mono-test format (2 tests) in 0.2-ml PCR tube strips, identified in different colors.
- All PCR mixes include primers marked at the 5' end with fluorochrome 6-FAM, allowing automatic analysis of fragments by capillary electrophoresis (compatible with ABI PRISM® 310,3100,3130,3130xl, 3500 and 3500xL Genetic Analyzers).
- All amplifications can be performed with a single program in the thermal cycler.. This program is the same as the one used in the IgH, TCR gamma and TCR beta rearrangements (MAD-003994BP, MAD-003994TP, MAD-003993TP) allowing their simultaneous analysis.
- Clonal and polyclonal DNA positive controls are included.

This is a product for in vitro diagnostics

Components included in the kit:

Table 1. Composition of reagents:

REAGENT	REFERENCE	COMPONENTS AMOUNT			
Amplification mixes (mono-test in tubes of 0.2)	MAD-003999M	IgK-A (6-FAM) (mix of oligonucleotides from regions Vк and Jк of the IgK gene, dNTP and buffer solution)	20 blue-colored PCR tubes (46 μl)		
		IgK-B (6-FAM) (mix of oligonucleotides from regions Vκ, intron-RSS and Kde of the IgK gene, dNTP and buffer solution)	20 purple-colored PCR tubes (46 μl)		
		IgL (6-FAM) (mix of oligonucleotides from regions Vλ-Jλ of the IgL gene, dNTP and buffer solution)	20 green-colored PCR tubes (46 μl)		
		Internal Control Mix (6-FAM) (gene specific oligonucleotides p53 exon 5, dNTP and buffer solution)	20 yellow-colored PCR tubes (46 μl)		
DNA polymerase	MAD-F122-2	Hot Start II DNA Polymerase*	2 x 60 μl		
DNA positive controls	MAD-003999B2	Clonal IgK-IgL Positive Control DNA (Clonal IgK-IgL Positive Control DNA)	1 x 50 μl		
	MAD-003994B3	Polyclonal Positive Control DNA Polyclonal Positive Control DNA	1 x 50μl		

^{*} Limited Use Labeling License

This Product includes a limited, non-transferable license under U.S. and foreign patents owned by BIO-RAD Laboratories, Inc. for its use. No other license under these patents is expressly or impliedly conveyed to the purchaser by the acquisition of this Product.

Phire DNA Polymerase is manufactured by Thermo Fisher Scientific. Phire TM is a trademark or registered trademark of Thermo Fisher Scientific, Inc. or its subsidiaries.

Necessary material not provided in the kit:

• Specific instrumentation:

- Thermal cycler
- Microcentrifuge
- Thermostatic bath / heater
- Power supply
- DNA electrophoresis chamber
- UV Transilluminator
- Gel documentation system
- Sequencer with capillary electrophoresis

Consumables:

- Xylene (optional)
- Ethanol 100%
- PBS buffer (for the extraction of lymphocytes from whole blood)
- TE buffer 1x (10 mM Tris, 1 mM EDTA pH 8.0)
- DNase/RNase-free Eppendorf tubes of 1.5/0.6/0.2 ml

Reagents for the extraction of genomic DNA from samples of blood, cell buttons, fresh tissues, or formalin-fixed paraffin-embedded tissues. All the reagents are included in *Vitro S.A.'s kit: PARAFFIN TISSUE PROCESSING KIT Ref: MAD-003952M*.

Reagents for electrophoresis of amplified DNA (agarose or polyacrylamide gels and auxiliary reagents for electrophoresis). All the reagents are included in Vitro S.A. S.L.'s Kits: Agarose Gel DNA Electrophoresis Kit and Polyacrylamide Gel Electrophoresis Kit Ref: MAD-003980M and MAD-003990M respectively.

Reagents for analysis of fragments by capillary electrophoresis (adjust according to the filter/equipment used; *ABI PRISM®* 310, 3100, 3130, 3130xl, *3500* and *3500xL* Genetic Analyzers): standard polymer of molecular weight, Cathode and Anode buffers and deionized formamide.

Precautions:

It is advisable to use disposable gloves during the whole development of the technique.

Due to the high sensitivity of the DNA amplification technique, it is recommended that the amplification reaction is carried out using filtered pipette tips to avoid contamination.

The major source of contamination is usually the amplified product itself, so it is advisable to carry out the handling of the amplified products and the subsequent electrophoresis in working areas separate from the area where the samples are processed and to use different pipettes in each case. Three working areas should be defined: the DNA sample processing and preparation area, the amplification area and the detection area (electrophoresis). The workflow must always go in a single direction, from the sample preparation and amplification area to the detection area, and never in the opposite direction.

It is recommended to include negative amplification controls containing all the reagents handled in the kit, except for the DNA sample, in order to detect and control any possible contamination of the reagents with DNA both from test samples and from amplified products.

Storage and transport:

The kit is transported under cooling conditions (-10/-30°C or 2-8°C) and is stored at -20°C. The control DNA included in every kit must be stored at 2-8°C after thawing.

Safety Recommendations

The product is only intended for professional laboratory purposes, and it is not intended for pharmacological, home or any other type of use. The current version of the material safety data sheet of this product can be downloaded by searching its reference at www.vitro.bio or can be requested at regulatory@vitro.bio.

TECHNICAL PROCEDURE

1. EXTRACTION OF GENOMIC DNA

For the DNA extraction it is recommended to use the reagents included in the **PARAFFIN TISSUE PROCESSING KIT (Ref: MAD-003952M)**.

Before beginning with the DNA extraction, thaw the reagents supplied in the kit: mineral oil, extraction buffer and a vial of DNA release. After use, the mineral oil must be stored at 15-25 °C and the rest of the components must be kept at -20 °C.

1.1. PARAFFIN-EMBEDDED TISSUE SECTIONS

- 1. Take 1-4 tissue sections (according to the amount of material present in each section) of 10 $\,\mu$ m thick and put them in a microcentrifuge tube of 1.5 ml with the aid of a needle or thin tweezers.
- 2. Add **500 μl** of **mineral oil** (included in the kit) and heat on hot plate for **2 min at 95°C**. Centrifuge for 2 min at 8000 rpm in microcentrifuge.
- 3. Remove the mineral oil without dragging tissue debris.
- 4. Repeat steps 2 and 3. (Mineral oil residues do not interfere in the process of DNA extraction).
- 5. Prepare a mix of Extraction buffer and DNA release (for every 60 μ l of extraction buffer, add 1.5 μ l of DNA release) in enough volume to process the tissue samples.
- 6. Add an adequate volume of the previous mix (50-500 μl) to the resulting tissue button until the tissue becomes suspended in the solution (this step is very important to achieve a good DNA performance and degrade the contaminant cell debris that may interfere in the subsequent amplification of this DNA).
- 7. Shake several times with a micropipette to homogenize, centrifuge for 5 seconds to eliminate the bubbles and incubate for **24-48 hours** at **60°C** in thermostatic bath or hot plate.
- 8. Heat at 95º C on hot plate for 8-10 min.
- 9. Centrifuge for 5 min. at full speed. After centrifuging, two phases should remain: an upper phase corresponding to the remains of mineral oil and a lower aqueous phase containing the DNA in solution. On the bottom of the tube, a small button with non-digested tissue debris must remain. COLLECT THE AQUEOUS PHASE (it contains the DNA) avoiding taking tissue debris from the tube's bottom.
- 10. Use **3** μ l of this DNA solution to amplify. The sample can be stored, being stable at 4 °C for a week, or at -20/-80 °C for several months.

1.2. FROZEN TISSUE

- 1. Prepare 1-2 tissue sections in cryostat or by means of a scalpel blade and put them in a microcentrifuge tube of 1.5 ml with the aid of a needle or thin tweezers.
- 2. Continue with **step 5** of the previous protocol for paraffin-embedded sections.

Note: In order to avoid evaporation of the extraction buffer mix and DNA release during incubation at 60 °C, a few drops of mineral oil, included in the kit, may be added.

E IVD

1.3. PERIPHERAL BLOOD/BONE MARROW SAMPLES

Note: Do not use heparinized whole blood. It is recommended to use EDTA or Trisodium Citrate as anticoagulant.

- 1. Isolate white population with Buffy Coat: use 1.5 ml of blood/marrow with EDTA and divide by centrifuging at 1500-2000 x g for 10-15 min at room temperature. This process will split an upper phase of plasma, a lower one with red population and a thin interphase between the two with white cells (buffy coat). (In a typical clinical centrifuge 1500-2000 x g equals to 3000-3400 rpm).
- 2. Collect the intermediate white population and transfer to a clean tube.
- 3. Wash with 5 ml of TE buffer 1X and incubate for 10 min at 37º C to lyse the rest of haematids.
- 4. Centrifuge at **3000 rpm for 5 min** to precipitate the white cells.
- 5. Re-suspend the cell button in 1 ml of buffer TE 1X and transfer to an Eppendorf tube of 1.5 ml.
- 6. Centrifuge at 8000 rpm for 5 min in microcentrifuge and remove the supernatant.
- 7. Continue with **step 5** of protocol 1.1 for paraffin-embedded samples.

Note: In order to avoid evaporation of the extraction buffer mix and DNA release during incubation at 60 °C, a few drops of mineral oil, included in the kit, may be added.

2. AMPLIFICATION REACTION

For each test DNA sample to analyze, 4 mixes will be amplified: two for IgK, one for IgL and another one for the internal control (IC). It is recommended to preserve the mixes of the light, since they contain primers labeled with fluorescence.

2.1. SAMPLES PREPARATION

- 1. Thaw in a blue tube (IgK-A) a purple tube (IgK-B) a green tube (IgL) and a yellow tube (IC) for each sample (the tube and cap strips are divisible by sectioning). Centrifuge briefly and keep in ice. Add to each of them following this order:
 - 1 μl of the enzyme Hot Start II DNA Polymerase
 - 3 μl of the DNA sample*
- 2. Mix well and centrifuge for 5 seconds in microcentrifuge to remove bubbles.

*If DNA of known concentration is available, it is recommended to add between 50-200ng of DNA.

Note: It is important to keep the tubes in ice up to the moment of placing them in the thermal cycler in order to avoid non-specific binding of primers.

Vitro S.A.

2.2. AMPLIFICATION

1. Place all the tubes in the thermal cycler and amplify according to the program below:

98°C 2 min.

35 cycles:

98°C 10 s 60°C 10 s 72°C 15 s

72°C 1 min

2. Keep the tubes at 12-15°C when the reaction is finished. If the samples are not going to be processed at that moment, they can be stored at 4°C or at -20°C until use.

2.3. RECOMMENDED AMPLIFICATION CONTROLS

Some positive clonal and polyclonal control DNAs are supplied in the kit. It is recommended to amplify these DNAs with each batch of analyzed samples.

In order to control the potential presence of contamination from some samples to others, or from the handling of commonly used reagents during the handling of the samples, it is recommended to process a blank sample without DNA. This sample would carry the same reagents used in the DNA extraction from the samples and would follow a similar processing to the rest of samples, but, as it does not contain DNA, the result after the amplification should be absence of signal for all the samples.

Likewise, it is advisable to analyze each sample in duplicate, that is, from the same genomic DNA, amplify in duplicate for all the fragments. This way, the interpretation of doubtful results is made easier and it is verified with the duplicate the size of monoclonal peaks amongst a reactive polyclonal population.

3. ANALYSIS OF AMPLIFIED PRODUCTS

3.1. GEL ELECTROPHORESIS

Warning!: Given the high sensitivity of the amplification technique, which generates high quantities of a specific DNA fragment, this amplified product represents a significant source of contamination in the laboratory. It is recommended that handling and electrophoresis of the amplified products be carried out in a work area away from the sample processing area to avoid contamination of the samples with the amplified DNA, which could lead to false positive results.

The development of the amplified products can be carried out both in agarose gels (4%) and in polyacrylamide gels (6-8%) with TBE 0.5X buffer. The resolution in polyacrylamide gels is higher than that of agarose gels.

Vitro S.A. has kits for DNA electrophoresis in both agarose and polyacrylamide gels ready for use which also include all the reagents necessary for carrying out the electrophoresis: molecular-weight size marker, loading buffer, concentrated TBE buffer, EtBr. (Cat. No.: MAD-003980M and MAD-003990M for agarose and polyacrylamide respectively).

In order to differentiate products derived from mono- or polyclonal populations, it is recommended to carry out a "heteroduplex" analysis of the PCR products, by denaturing/re-naturing the amplified products.

If clonal rearrangement of the Igk and/or IgL genes has occurred, a "homoduplex" will be obtained, while in the case of polyclonal population, after the denaturation/re-naturation process, "heteroduplex" with heterogeneous junctions will be formed.

3.1.1. PROCEDURE

- 1. Denature the PCR products at 94° C, 5 min.
- 2. Re-nature by quickly transferring to ice (4 °C) and keep for 10-60 min.
- 3. Assemble the agarose or polyacrylamide gel in its appropriate cuvette and cover with electrophoresis 0.5X TBE buffer.
- 4. Take 20 μ l of PCR product and mix with 4 μ l of 6X loading buffer.
- 5. Load the samples in the gel wells and place 10 µl of molecular weight-size marker in one of the lanes.
- 6. Leave the electrophoresis work for **1-2 h. at 100 Volts**. The voltage and run time can be adapted depending on the type of gel, electrophoresis chamber, size of the amplified product, etc.
- 7. Stain with 0.5µg/ml EtB in water or 0.5X TBE and visualize in transilluminator with UV light.

3.2. CAPILLARY ELECTROPHORESIS

All PCR mixes contain 6-FAM fluorochrome labeled primers, allowing these PCR products to be analyzed by capillary electrophoresis in addition to conventional electrophoresis (compatible with *ABI PRISM®* AB 310, 3100, 3130, 3130xl, 3500 and 3500xL Genetic Analyzers).

Automated sequencers based on capillary electrophoresis, such as the ABI PRISM® 3100 or 3500 Genetic Analyzers by Applied Biosystems, are systems with a high rate of reproducibility and sensitivity in the sequencing and analysis of genomic fragments. The efficiency exceeds most sequence analyses based on the use of acrylamide gels. In addition, these systems allow the analysis of the results in a fast and precise way by means of **specific** software.

3.2.1. PREPARATION OF THE PCR PRODUCT

- 1. Mix in an Eppendorf tube of 0.2 ml: 15 μ l of deionized formamide + 0.5 μ l of the molecular weight standard + 1 or 2 μ l of amplified DNA (this volume of amplified product can be modified if the fluorescent signal is outside the optimal range).
- 2. Homogenize in vortex and give a pulse.
- 3. Denature at 95°C x 5 min, cool at 4°C and load in sequencer.

Electrophoresis conditions (3500 GENETIC ANALYZER):

- Polymer: POP-7 POLYMER

- Buffer: ANODE and CATHODE BUFFER CONTAINER 3500 SERIES

- Capillary: CAPILLARY ARRAY 8-CAP 50 CM

- Label: GeneScan 600 LIZ Size Standard

- Formamide: HI-DI FORMAMIDE

- Electrophoresis:

- Oven Temperature (°C): 60

- Run Voltage (KVolts): 19.5

PreRun Voltage (KVolts): 15

Injection Voltage (KVolts): 1.6

Run time (sec): 1330

Pre Run time (sec): 180 sec

Injection Time (sec): 8

- Data Delay (sec): 1

Fluorochromes and filters:

Dye set	Filter set	Blue	Green	Yellow	Red	Orange
DS-31	D	6- FAM™	VIC®	NED™	ROX™	
DS-33	G5	6- FAM™	VIC®	NED™	PET™	LIZ®

3.2.2. OPTIMAL CONDITIONS FOR SAMPLE LOADING

In order to make sure that the DNA sample has been processed correctly and that there is sufficient DNA in quantity and quality to generate a valid result in the electrophoresis analysis, it is recommended that an aliquot of the PCR products (including IC) is loaded into a conventional EtBr-stained electrophoresis, prior to analysis by capillary electrophoresis.

If an excessive amount of PCR product is loaded into the capillary electrophoresis, the peaks in both the molecular weight standard and the product may be artefacted, resulting in false readings. Thus, an excess of one clonal sample can result in a spike pattern that would simulate what a polyclonal sample might be.

To avoid this problem, make sure that the intensity of the fluorescent signal is maintained between 400-31000 fluorescent units in the 3500 model.

4. INTERPRETATION OF RESULTS

4.1. AMPLIFICATION INTERNAL CONTROL (IC)

An intense band or peak of **269 base pairs**, (capillary electrophoresis) should appear in all samples, indicating that the sample handling process and the quality of the DNA have been adequate. This amplification control is essential, especially in those samples obtained from paraffin-embedded material, where the quality and quantity of DNA obtained is unknown.

If no amplification band appears with the IC, a negative amplification result of the IgK and IgL chains cannot be evaluated. This may be due to insufficient DNA obtained in the extraction process, to partially degraded DNA or the presence of PCR inhibitors in the sample. In the first two cases, DNA performance and quality can be improved by increasing the starting material or prolonging the incubation of the tissue with the lysis+protease buffer for another 24-48 hours.

If it is suspected that the sample may contain PCR inhibitors (ratios outside the expected range after measuring the concentration of purified DNA in a spectrophotometer), evaluable results can sometimes be obtained by diluting the test sample in order to reduce the presence of such inhibitors.

If it is suspected that the sample may contain PCR inhibitors (ratios outside the expected range after measuring the concentration of purified DNA in a spectrophotometer), evaluable results can sometimes be obtained by diluting the test sample in order to reduce the presence of such inhibitors.

If after repeating the process no amplification is achieved, the sample should be reported as: "non-assessable for analysis of fragments of the IgK and IgL genes by PCR".

4.2. REARRANGEMENTS OF IgK and IgL FRAGMENTS

The following table indicates the expected size range of the amplified fragments for each of the amplification mixes:

 $C \in \mathbb{N}$

Table 2.

Primer mix	Size Ranges	Clonal DNA positive control	Color (PCR tube)
IgK-A	120-140, 190-210 and 260-300 pb	267 bp	Blue
IgK-B	210-245, 255-300 and 350-390 pb	234 and 280 pb	Purple
IgL	140-165 bp	138 and 142 pb	Green

- (1) The fragment sizes for the positive controls included in the kit and that are indicated in Table 2 have been obtained with a 3500 Genetic Analyzer and analyzed with Genemapper. This size can vary between 1-6 bp depending on both the capillary electrophoresis equipment and the analysis software used. Once you have determined the size of the amplicon on your own platform, you can consider this value as a reference and it will be reproducible in the rest of your electrophoresis.
- (2) The expected size ranges are estimated as a function of the positions of the primers and the expected insertion of nucleotides at the binding sites. However, they constitute a range of approximately 5-95% and true rearrangements with lower/higher sizes can occur as long as they are confirmed in the duplicates and in the absence of non-specific products in other samples

4.2.1 POSITIVE AND NEGATIVE AMPLIFICATION CONTROLS:

The **negative amplification control** performed with a **"blank" sample** should give no amplification in all the mixtures tested (including IC). If an amplified product is detected in any PCR mixture, it would indicate the presence of reagent contamination and the test would have to be repeated to validate it.

The **polyclonal positive control** should give multiple bands (gel) or peaks (capillary electrophoresis) within the size range indicated in Table 2 for each amplification mix.

The **positive clonal control** will give one single band or peak for each of the PCR mixes tested, the size of which is indicated in Table 2.

Any other than the expected results obtained after analyzing the DNA, the **polyclonal positive control** would indicate that the test is invalid and the problem samples could not be interpreted.

4.2.2 ANALYSIS OF THE TEST SAMPLE:

Before interpreting the results obtained with the test sample, it is necessary that all the controls included in the test, both positive and negative as well as the internal amplification control have been correct.

It is also recommended to follow the indications of the latest guide updates such as those of the EuroClonality/BIOMED-2 group for the interpretation of the results.

AGAROSE-POLYACRYLAMIDE GELS

The clonal IgK rearrangement is visualized by electrophoresis through the presence of a single intense and sharp band within the expected size range (Figure 1). A sample is considered "clonal" when a band with all or one of the two amplification mixes tested is detected in the case of IgK (IgK-A and/or IgK-B).

Similarly, in the case of a clonal IgL rearrangement, we observe a single band within the size range expected (Figure 1).

If there is no clonal rearrangement and the test sample is composed of a polyclonal heterogeneous population of B cells, a heteroduplex will form and the result after electrophoresis will be a multitude of bands within the size range, which are visualized in the gel as a wide and diffuse smear (Figure 1).

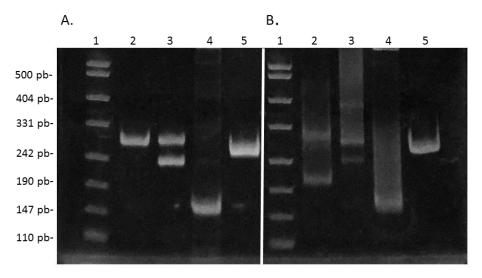


Figure 1. Analysis of results in 8% polyacrylamide gel. A. Clonal pattern Igk and IgL genes: 1. Molecular weight standard (MW), 2. Monoclonal pattern IgK-A, 3. Monoclonal pattern IgK-B, 4. Monoclonal pattern IgL, 5. Amplification internal control (IC) B. Polyclonal pattern Igk and IgL genes: 1. MW standard, 2. Polyclonal pattern IgK-A, 3. Polyclonal pattern IgK-B, 4. Polyclonal pattern IgL, 5. Amplification internal control (IC)

CAPILLARY ELECTROPHORESIS

The fluorochrome labeled amplification products are separated by capillary electrophoresis according to their size and are automatically detected by a laser.

• Polyclonal lymphoproliferative process (Figure 2): Gaussian distribution with multiple amplified peaks of different size (within the expected size range) for each of the regions analyzed of the IgK gene (IgK-A and IgK-B) and for the IgL gene representing a heterogeneous polyclonal population of B cells

It will be reported as "undetected clonality (detected polyclonality) for the IgK and IgL genes in the analyzed sample under the conditions of this test".

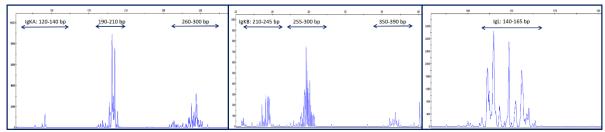


Figure 2: Electropherograms obtained after analysis, by capillary electrophoresis, of PCR-amplified products from the IgK-A and IgK-B regions of the IgK gene and for the IgL gene (from left to right). They represent the typical Gaussian distribution corresponding to a polyclonal population with multiple amplified products of different sizes for each of the amplified regions of the IgK and IgL genes.

Clonal lymphoproliferative process (Figures 3 and 4): one single or two prominent peaks appear within the expected size range with all or some of the primer mixes tested (IgK-A and IgK-B) for the Igk and IgL genes. These peaks are reproduced with the same size in the amplification duplicate and correspond to a clonal population (one peak) with a single amplified clone or biallelic/biclonal (two peaks) with two amplified clones (biclonal) within the size range analyzed.

Sometimes multiple peaks of different sizes may appear on the same electropherogram, some of which stand out in height from the others. The criterion for considering one or two clonal peaks is that

they are at least 2.5 times higher than the height of the other adjacent peaks representing the polyclonal background and that the size of these peaks is confirmed in the PCR duplicate.

When the size difference between two dominant amplified peaks in the same region is ≤ 2 pb these peaks will be considered as a single peak especially if these peaks are the same height. This may be due to the fact that during PCR the polymerase could add an extra adenine not present in the target sequence at the end of the amplified fragment. If this does not occur equally in all the amplified fragments there will be a variation in +/-1pb for the same original rearranged fragment.

These results would be reported as: "clonality detected in the analyzed sample for the IgK gene (in case of obtaining these peaks for at least one of the two PCR mixes of the IgK gene)! or "clonality detected in the analyzed sample for the IgL gene under the conditions of this test" (if the peak obtained is observed with the IgL mix only). In case a similar result is obtained to those described both for IgK and IgL, the case will be reported as: "clonality detected in the analyzed sample for the IgK and IgL genes under the conditions of this test".

Nonetheless, two peaks of approximately 194 and 197 pb in the IgK-A tube may appear. This phenomenon may be due to a limited heterogeneity of the Vk-Jk binding sites, which generates a high frequency of products that rearrange with the same size. This peaks are specific and when they appear together in this region, 190-210 pb (Vk3f-Jk), the sample must be considered non-clonal, despite the fact that their height surpasses the rest of peaks (Figure 5). In any case, if any of these peaks appeared individually in this region (194 or 197 pb), the case must be considered clonal.

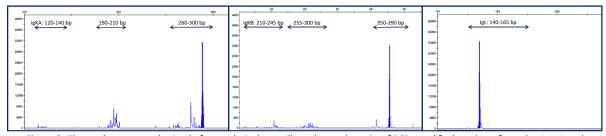


Figure 3: Electropherograms obtained after analysis, by capillary electrophoresis, of PCR-amplified products from the IgK-A and IgK-B regions of the IgK gene and for the IgL gene (from left to right). They represent a single peak within the established size range obtained with each of the IgK-A, IgK-B (IgK gene) and IgL primer mixes and corresponding to a clonal population with a single amplified clone

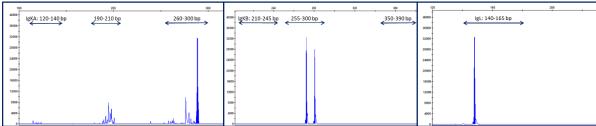


Figure 4: Electropherograms obtained after analysis, by capillary electrophoresis, of PCR-amplified products from the IgK-A and IgK-B regions of the IgK gene and for the IgL gene (from left to right). They represent different clonality patterns obtained from different samples. A: representation of a clonal pattern of prominent peak 2.5 times higher than the rest of the peaks present in the sample after amplification of the IgK-A region of the IgK-B gene: representation of a clonal pattern of two single peaks obtained after the amplification of the IgK-B region of the IgK gene. C: representation of a clonal pattern of single peak obtained after the amplification of the IgL gene. In a clonal sample, any of the patterns described may appear in all or some of the regions analyzed of the IgK gene.

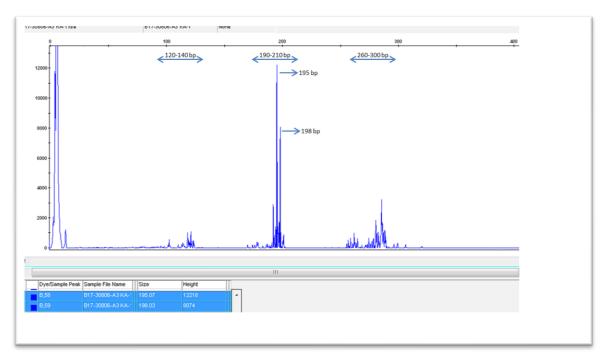


Figure 5: Specific peaks of 194 and 197 pb for IgK-A (Vk-Jk) in a polyclonal case.

• Pseudoclonal lymphoproliferative process (Figure 6): presence of 1 or 2 peak(s) or multiple peaks (n ≥3) not reproducible. This can occur when there is an amplification from a DNA sample containing a low number of B cells, an infiltrate or a small sample (e.g. skin).

These results would be reported as: "undetected clonality in the analyzed sample for the IgK and IgL genes with the conditions of this test that could be associated with a shortage of B-cellularity in the sample".

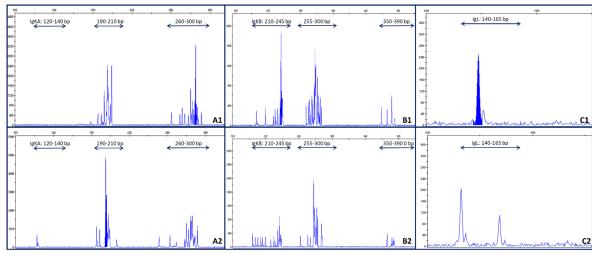


Figure 6: Electropherograms obtained after analysis, by capillary electrophoresis, of PCR-amplified products from the IgK-A and IgK-B regions of the IgK gene and for the IgL gene (from left to right). They represent a pseudo-clonal amplification pattern with 1 or 2 prominent peaks that do not reproduce with the same size in the duplicate. A1 and A2: duplicates after amplification of the IgK-A region; B1 and B2: duplicates after amplification of the IgK-B region; C1 and C2: duplicates after amplification of the IgL gene.

 Oligoclonal lymphoproliferative process (Figure 7): presence of multiple reproducible products (n≥ 3) in the duplicate as a consequence of the presence of an immune activation with dominant clones (e.g. infection, autoimmunity).

These results would be reported as: "oligoclonality/multiple clones detected in the analyzed sample for the IgK and IgL genes under the conditions of this test".

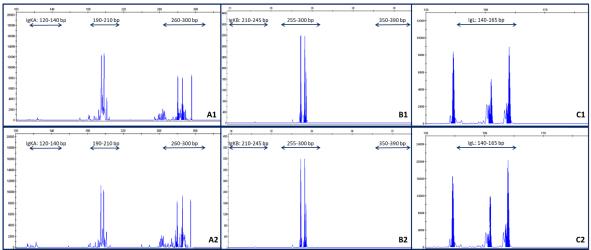


Figure 7: Electropherograms obtained after analysis, by capillary electrophoresis, of PCR-amplified products from the IgK-A and IgK-B regions of the IgK gene and for the IgL gene (from left to right). They represent an oligoclonal amplification pattern with three prominent peaks reproducing with the same size in the duplicate for each of the three regions analyzed of the IgK and IgL genes. A1 and A2: representation of duplicates obtained after amplification of the IgK-A of the IgK gene B1 and B2: representation of duplicates obtained after amplification of the IgK-B region of the IgK gene. C1 and C2: representation of duplicates obtained after amplification of the IgL gene.

5. LIMITATIONS OF THE TEST

In a sample containing a mix of tumor (clonal) B cells and an accompanying population of reactive B cells, the sharp band indicative of clonality may be masked by the rest of the multiple bands and not be visible by gel electrophoresis or capillary electrophoresis.

This method can detect a minimum of 5-20 tumor cells (IgK-IgL) among 100 tumor cells (Table 3). The results were obtained after testing all three amplification mixes with serial dilutions of a DNA sample from the cell line of B-cell lymphoma with a DNA from peripheral blood lymphocytes.

Table 3. Results of limit of detection

Mix	Limit of detection
IgK-A	10 ng clonal DNA (5 % in total 0.2μg)
IgK-B	10 ng clonal DNA (5 % in total 0.2μg)
lgK-L	40 ng clonal DNA (20% in total 0.2µg)

A negative clonality result with this test does not exclude the diagnosis of lymphoma from other clinical, morphological, and immunophenotypic data.

6. BIBLIOGRAPHY:

Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero ILM and Dongen JJM. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T-cell proliferations. Leukemia 1997; 11: 2192-2199.

Pas Evans, et al. Significantly improved PCR-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2007 Feb;21(2):222-9.

Van Krieken JH, et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007 Feb; 21(2):201-6.

Payne K, Wright P, Grant JW, Huang Y, Hamoudi R, Bacon CM, Du MQ, Liu H. BIOMED-2 PCR assays for IGK gene rearrangements are essential for B-cell clonality analysis in follicular lymphoma. Br J Haematol. 2011 Oct;155(1):84-92.

Langerak AW, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012, 26, 2159–2171

